



# Interference of Vibration Exposure in the Force Production



Cavacece<sup>1</sup> Tirabasso<sup>2</sup> Di Giovanni<sup>2</sup> Monti<sup>2</sup> Marchetti<sup>2</sup> Fattorini<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> Department of Physiology and Pharmacology V.Erspamer, Sapienza University of Roma, Italy



<sup>&</sup>lt;sup>1</sup>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Italy

<sup>&</sup>lt;sup>2</sup> INAIL, DIMEILA, Laboratory Physical Agents, Monte Porzio Catone, Italy

# **Table of Contents**

- ...am

  Results
  Discussion



# Purpose of Research: Concepts and Ideas

- Study aimed to evaluate the influence of the mechanical vibration on neuromuscular activation and motor parameters as force production.
- The hypothesis is that vibration exposure can induce early fatigue and unbalanced motor control during a motor task.
- Experimental conditions were: without external vibration and
- vibration at several amplitude levels.
- Grip force exerted was uniform among subjects because scaled respect to individual motor performance.



# Material and Methods: Tests

- The tests were performed at 30 Hz at different accelerations with a grip force.
- Moreover 30 Hz is a typical operative tool frequency in different professional activities.
- 30% of the maximum voluntary contraction (MVC).
- The selected frequency represents the frequency inducing maximal hand-arm energy transmission.





### **Motor Task**

- The motor task consisted of holding the instrumented handle with the dominant hand at predetermined grip force values.
- The handle had two strain gauges, measuring push and pull forces.
- The subject had to maintain the target force value for as long as possible.
- The handle was divided into two halves to measure both components of gripping force (push and pull).
- The deformation of the handle resulted in a strain gauge response.
- Continuous control of push and pull forces on an oscilloscope.
- Temperature and humidity are constant values.



### **Motor Task**

- MVC was evaluated as the maximal force between three trials of maximal gripping.
- The subject stood on an elevated platform to adjust the forearm and handle axes.
- The subject was instructed to balance push and pull force to attain pure grip force, reducing other muscular contributions except the forearm one as more as possible.
- The minimum rest period between successive tests was 60 min.



# Push-Pull Balance



- Mean Push Force;Mean Pull Force.

$$\Delta G = \frac{MeanPushForce - MeanPullForce}{MVC30\%}$$



# Maximum Voluntary Contraction Values

| Subject     | Α   | В   | С   | D   | E   |
|-------------|-----|-----|-----|-----|-----|
| Height [cm] | 170 | 167 | 170 | 184 | 181 |
| Weight [kg] | 103 | 72  | 65  | 93  | 88  |
| Gender      | M   | M   | M   | M   | М   |
| MVC 1 [N]   | 470 | 400 | 380 | 470 | 330 |
| MVC 2 [N]   | 490 | 430 | 360 | 460 | 310 |
| MVC 3 [N]   | 490 | 400 | 350 | 450 | 330 |
| MVC 30% [N] | 140 | 120 | 110 | 140 | 100 |

Different percentages of MVC tests on the same subject were randomized to avoid hysteresis.





# Values of ∆G evaluated on 5 Subjects: Absence and Presence of Vibration

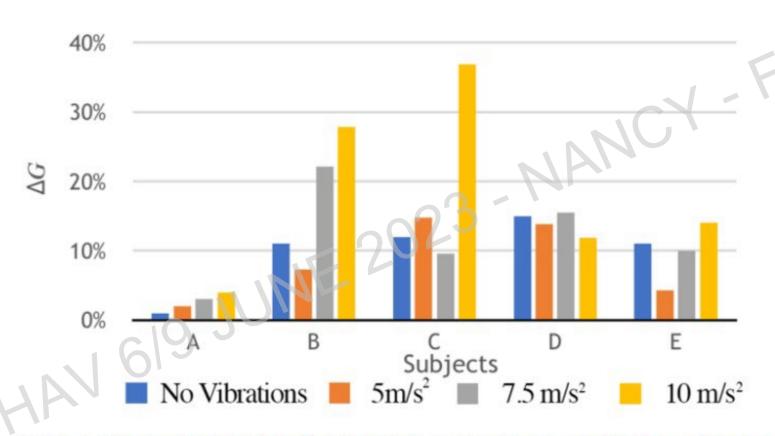



Figure 1. Values of  $\Delta G$  evaluated on 5 subjects in the absence of vibration and in the presence of vibration with accelerations at 5 m/s<sup>2</sup>, 7.5 m/s<sup>2</sup> and 10 m/s<sup>2</sup>.



# The $\Delta G$ value and the Standard Deviation: Absence and Presence of Vibration

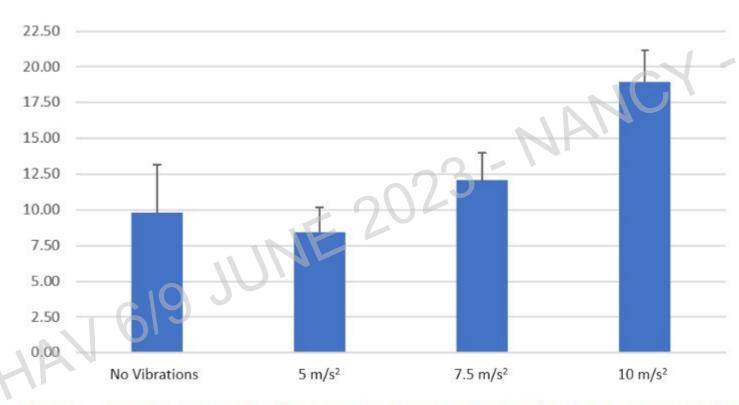
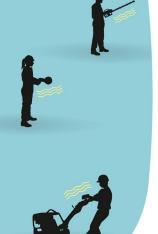




Figure 2. The  $\Delta G$  value and the standard deviation evaluated in the absence and presence of vibration with accelerations of 5 m/s<sup>2</sup>, 7.5 m/s<sup>2</sup> and 10 m/s<sup>2</sup>.



# The $\Delta G$ value and the Standard Deviation

- The nervous system can perform the target task in all conditions but with different muscular interplay engagement.
- We observe a different behavior, an unbalance, of the forearm muscles being responsible for the production of push and pull forces.
- The unbalance is related to the vibration's acceleration



# Time of Gripping Maintenance

| Subject | No<br>Vibrations | Vibrations            |                         |                        |  |
|---------|------------------|-----------------------|-------------------------|------------------------|--|
|         |                  | 5 [m/s <sup>2</sup> ] | 7.5 [m/s <sup>2</sup> ] | 10 [m/s <sup>2</sup> ] |  |
| Α       | 205              | 146                   | 140                     | 145                    |  |
| В       | 264              | 312                   | 242                     | 293                    |  |
| С       | 288              | 204                   | 202                     | 280                    |  |
| D       | 275              | 307                   | 286                     | 307                    |  |
| E 619   | 303              | 305                   | 302                     | 295                    |  |

The fatigue results did not show evidence of changes in the time of force exertion with vibration.



# Discussion

- In every experimental condition, the nervous system modulates muscular activation of several muscles to maintain grip force as long as possible.
- The force production is a complex task involving the nervous and muscular systems which responds with the contraction.
- The time duration before fatigue is quite unchanged with vibration compared to without vibration.
- The gripping task involves a great number of muscles belonging to different anatomical districts, such as the hand, forearm, arm and shoulder.



# Discussion

- Handle vibration evokes a neuromuscular response as the tonic vibration reflex is acting as a sort of interference on the motor drive to gripping.
- Changes in the push and pull force control could be observed by measuring the gripping forces on the handle's palm and fingers.
- Higher handle vibration levels induce a relative increment of push and pull force imbalance.



# Conclusion

- Force production parameters, fatigue and push and pull force values were assessed with and without vibration on five subjects.
- Vibration does not seem to influence the fatigue phenomenon because of a neuromuscular rearrangement.
- These changes were recognized by the push and pull balance during the gripping task.
- Data confirm the neuromuscular plasticity involved in adapting the force production in interfering conditions at the dispense of fine muscle control.
- The loss of fine muscle control should be better investigated to monitor muscular integrity.



# Thank You for your kind attention

